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Learning Objectives: 

 

From this module, a continuation of the last module, students may get to 

know about the following: 

1. Properties of multipole radiation. 

2. Energy contained in the electric and magnetic multipole radiation. 

3. The angular momentum of the electric and magnetic multipole 

radiation. 

4. Detailed angular distribution of the electric and magnetic multipole 

radiation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

31 Multipole Fields - II 
 

31.1 Electric and magnetic multipole fields 

 

In the last unit we had started with a general discussion of multipole fields.  We had obtained the 

spherical wave solution of the scalar wave equation in terms of the spherical Bessel functions. We 

had then introduced the spherical harmonics and the operator )( 


riL  which is familiar to 

the students from quantum mechanics.  Next we described some properties of this operator.  

Further we took up the task of finding the spherical wave solution of Maxwell equations.  These 

being vector equations, their solutions were also obtained in terms of the vector spherical 

harmonics 
m

lYL


.  We have two types of solutions- electric multipole and magnetic multipole 

solutions: 
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The normalized vector spherical harmonics are 
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In terms of these the general solution of the Maxwell equation was written as  
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We now continue with the study of multipole fields. Our next task is to find the properties of 

these multipole fields, viz. energy and angular momentum etc. 

 

31.2 Properties of multipole fields 

 

Let us look at the individual multipole fields given by equations (1) to (4).  In equation (3) for 

example, )(krfl  is a linear combination of the two spherical Bessel functions nl and jl.  In the 

near zone 1kr , the function jl tends to zero and from the limiting behaviour of nl, 
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we have 
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where the proportionality coefficient 
l

k
  is chosen for later convenience.  The electric field, 

given by equation (4), becomes 
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To find the curl on the right hand side we use the vector identity  

 

  )1()( 2

r
rrrLi






    (13) 

 

Since 
1l

m

l

r

Y
 is a solution of the Laplace equation, the first term vanishes.  The result is 
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The presence of gradient gives one higher power of r in the denominator so that in the near zone 

the electric field dominates over the magnetic field H


.  The magnetic multipole fields can be 

obtained in exactly the same manner or by simply noting that the roles of E


 and H


 are 

interchanged according to the transformation 
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In the far or radiation zone (kr>>1) the multipole fields depend on the boundary conditions 

imposed.  Since we are interested in radiation by sources, we choose to consider outgoing wave 

boundary condition.  Then the radial wave function )(krfl  is proportional to )()1( krhl .  On using 

the asymptotic form of )()1( krhl : 
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we see that in the far zone the magnetic field for an electric (l, m) multipole goes as  

 

  
m

l

ikr
lE

ml YL
kr

e
iH


)1()(

, )(        (17) 

 

The electric field is given by 
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Since we are keeping only the highest power of r in our asymptotic formula, 
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In the second term use the vector identity for L


 , equation (13).  The result is 
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Since r/1~ , the second term can be omitted in the limit kr>>1, and we get 
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These fields are typical radiation fields, falling off as 1/r. 

 

For the magnetic multipoles, the corresponding results are obtained by making the interchange 

(15). 

 

31.2.1 Energy in the multipole radiation 
 

The fields that we have found above can now be used to calculate the energy and angular 

momentum of the radiation.  Let us consider a linear superposition of electric multipole fields 

with definite l but different m values.  Use the expression (6) above for the magnetic field  
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replace )(krfl  by )()1( krhl , and we have 

 

  

ll

m

ti

l

m

lEl

H
k

iZ
E

ekrhXmlaH







 

0

)1( )(),( 

     (24) 

For harmonically varying fields the time-averaged energy density has been derived earlier, and is 
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The last form follows from the fact that in the radiation zone the two terms are equal.  Now 

replacing )()1( krhl  by its asymptotic form, equation (16), the energy in a spherical shell between r 

and (r + dr) is 

 

  

 







',

'*

2

0

0

22

.),()',(*
2

*.
2

1

mm

m

l

m

lEE dXXmlamla
k

dr

dHHdrrdudrrdU









   (26) 

 

Further using the normalization equation (23), we get 
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independent of radius as was to be expected. 

 

For a general superposition of electric and magnetic monopoles of all l-values, there will be 

summation over l as well, and corresponding magnetic multipoles will also be added: 
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Thus the total energy in a spherical shell in the radiation zone is an incoherent sum over all 

multipoles. 



 

 

 

31.2.2 Angular momentum of the multipole radiation 
 

Let us now find the angular momentum carried by the radiation.  The density of angular 

momentum of the field is (we use the symbol m


 for density of angular momentum of the 

field, and M


for the total angular momentum, to avoid confusion with the angular 

momentum operator L


.) 
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For harmonic fields the time-averaged angular momentum density will be 
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Expand the triple vector product and use equation (24) for the electric field to get 
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Once again let us first consider a linear superposition of electric multipole fields with definite l 

but different m values.The total field angular momentum in a spherical shell between r and (r + 

dr) in the far zone is 
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Now use the explicit form, equation (22), for 
m

lX


 and rewrite the above equation as 
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On using the orthonormality of spherical harmonics and the properties of 
m

lYL


 studied in the last 

module: 
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we can obtain the following expressions for the components of 
dr

Ld


: 
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The expressions for the x- and y- components are rather involved, that for the z- component is 

simple.  This has to do with the way the spherical polar coordinates are defined where z-axis is 

taken as the polar axis. 

 

For a multipole with a single m value, xM  and yM  both vanish while 
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independent of r. 

 

This is a relation between the energy and angular momentum in classical physics.  In quantum 

mechanics these equations have a familiar interpretation.  The radiation from a multipole of order 

(l,m) carries off m  units of z component of angular momentum per photon of energy .   Even 

with a superposition of radiation with different m, the same interpretation holds.  Now each 

multipole of definite m contributes incoherently to the z component of angular momentum.  In 

this case, however, the x and y components of angular momentum are also nonvanishing, with 

multipole of adjacent m components contributing to the sum.  All this is course familiar in 

quantum mechanics.   

 

Though we have presented the results for the specific case of electric multipole radiation, the 

same holds for magnetic multipole radiation as well.  In fact the result holds in general.  If we 

have a superposition of both electric and magnetic multipoles, equation (32) will be generalized 

to 
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When both electric and magnetic multipoles are present, there will be electric and magnetic 

multipole terms (first line) and the interference term (second line).  It can be shown that 



 

 

interference comes from those terms in which the value of l for electric and magnetic multipoles 

differs by unity. 

 

We continue with our analogy to quantum mechanics.  In this regard we would expect the ratio of 

the square of angular momentum to square of energy to have the value 
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On the other hand, as we have seen, the classical result for a pure (l, m) multipole is 
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since ),( yx MM  do no contribute. 

 

The reason for this anomaly lies in quantum nature of the electromagnetic field and the 

uncertainty principle.  According to the uncertainty principle, if the z component of angular 

momentum is known precisely, the other components will be completely uncertain, because the 

three components of angular momentum do no commute with each other.  However their mean 

square value is such that equation (41) holds.  All this is true in quantum mechanics for a single 

photon state.  If, however, the radiation contains many photons (the classical limit), the mean 

square value of the transverse components can be made negligible compared to the z component.  

It can be shown that for a state containing N photons 
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Selection Rules 

 

The quantum-mechanical interpretation of the radiated angular momentum leads to selection rules 

for transitions between various quantum states.  Between two states ),( MJ  [angular momentum 

J  and z component M] and )','( MJ , possible multipole transitions have ),( ml  such that 

'|'| JJlJJ   and 'MMm  . 

 

Another aspect regarding the quantum radiative transitions is the parity of a state.  Parity is a 

property which determines the behavior of a field or state under space inversion, rr


 , and in 

quantum mechanics is a quantum number that is conserved in electromagnetic transitions.  The 

parity of a multipole field is determined by the magnetic field mlH ,


.  The interaction of a charged 

particle with the electromagnetic field is proportional to ).( Av


.  Since 
0/AH


  and the 

curl operator changes parity, mlH ,


 and mlA ,


 have opposite parities.  Further since v


 is a polar 

vector, the operator Av


.  will differ in parity by the parity of the magnetic field. 

 



 

 

For electric multipole, the magnetic field is given by equation (24). Parity transformation, 

rr


 , in spherical polar coordinates amounts to   ,,rr .  The 

operator prL


 , being an axial vector, is invariant under inversion, and from its definition, 

the parity of 
m

lY  is 
l)1( .  Thus the parity of mlH ,


 in this case is 

l)1( .  The electric field, 

mlml H
k

iZ
E ,

0
,


  therefore has parity 

1)1(  l
.  Similarly one can see that for a magnetic 

multipole of order ),( ml  the parity is 
1)1(  l
. 

 

Adding the requirement of parity conservation, it follows that only certain transitions are allowed, 

the rest are forbidden.  For example, if the states have 2/1J  and 2/3'J , the allowed 

multipole orders are 2,1l .  If the parities of the two states are same only magnetic dipole and 

electric quadrupole transitions are allowed. In the event of the two parities being opposite, the 

allowed transitions are electric dipole and magnetic quadrupole.  

 

31.3 Angular distribution of the multipole radiation 
 

For a general localized source distribution, the radiation will consist of a linear combination of all 

multipoles, both electric and magnetic.  The fields are given by equations (6) and (7) and in the 

radiation zone these expressions reduce to 
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The coefficients ),( mlaE  and ),( mlaM  are of course related to the properties of the source.  

From the expression for the magnetic field we obtain the time-averaged power in the 

usual way: 
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It follows from this expression that 

 

 The electric and magnetic monopoles of a given order ),( ml  have the same angular 

distribution. 

 

 The polarization states of the magnetic and electric multipoles of a given order ),( ml  are 

at right angles to each other. 

 

 The order of radiation can be determined by measuring the angular distribution. 

 

 The magnet or electric nature of the multipole radiation needs measurement of the 

polarization as well. 



 

 

 

For a pure multipole of order ),( ml  
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Or 
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From the definition (5) of m

lX


in terms of m

lY  and the well known properties of m

lY  and 

the operator L


 studied in the last module, we have 

 


























 



2221

21
2

2

0

||||)1)((
2

1

||)1)((
2

1

)1(

|),(|

2

),(

m

l

m

l

m

l

YmYmlml

Ymlml

ll

mla

k

c

d

mldP 
 (49) 

 

The table below lists the value of the expression in the square bracket for l=1, 2: 
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These distributions are shown in the figure below.  [Figure 16.1 from Jackson ed. 2.  

Rotate all the five figures by 900.  The middle figure will remain 

unchanged. ] 

 
The dipole distribution correspond to an oscillating dipole; parallel to the z-axis for  m=0; and 

along the x- or y-axis for .1m  

 

Using the addition theorem for spherical harmonics,  
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we can show that 
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Thus if a source consists of a set of multipoles of order l with coefficients a(l,m) independent of 

m, the angular distribution will be isotropic.  This is usually the case with atomic and nuclear 

radiative transitions. 

 

The total power radiated by a pure multipole of order (l,m) is obtained by integrating equation 

(48) over the entire solid angle and is 
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For a general source the angular distribution is given by equation (46).  On integration over the 

solid angle, the cross term disappears, and the total power radiated is just the incoherent sum of 

the individual contributions: 
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Summary 
 

1. In this module we have continued with our study of the multipole 

radiation. 

2. Our next task was to study the various properties of the multipole 

radiation. 

3. We obtain expressions for the energy density and energy flow in both 

electric and magnetic multipole radiation. 

4. Next we study angular momentum in multipole radiation.  We work 

out in detail the case of electric multipole; magnetic multipole case 

can be dealt with in a similar fashion.   

5. We also obtain expression for the ratio of angular momentum to 

energy of the field and comment on the difference between the 

classical and quantum mechanical expressions for this. 

6. Finally we look at the detailed angular distribution of the electric and 

magnetic multipole radiation.  We make several comments on the 

similarities and differences between the angular distribution of 

electric and magnetic multipoles.  

7. We tabulate the angular distribution for the two important cases of 

dipole and quadrupole radiation. 


